MAP Estimation of Continuous Density HMM : Theory and Applications
نویسندگان
چکیده
We discuss maximum a posteriori estimation of continuous density hidden Markov models (CDHMM). The classical MLE reestimation algorithms, namely the forward-backward algorithm and the segmental k-means algorithm, are expanded and reestimation formulas are given for HMM with Gaussian mixture observation densities. Because of its adaptive nature, Bayesian learning serves as a unified approach for the following four speech recognition applications, namely parameter smoothing, speaker adaptation, speaker group modeling and corrective training. New experimental results on all four applications are provided to show the effectiveness of the MAP estimation approach.
منابع مشابه
Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains
In this paper a framework for maximum a posteriori (MAP) estimation of hidden Markov models (HMM) is presented. Three key issues of MAP estimation, namely the choice of prior distribution family, the specification of the parameters of prior densities and the evaluation of the MAP estimates, are addressed. Using HMMs with Gaussian mixture state observation densities as an example, it is assumed ...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملRelevance-Vector-Machine Quantization and Density-Function Estimation: Application to HMM-Based Multi-Aspect Target Classification
The relevance vector machine (RVM) is applied for feature-vector quantization (codebook design) and for density-function estimation in high-dimensional feature space. The RVM represents a Bayesian extension of the widely applied support vector machine (SVM). The use of RVMs for quantization and density-function estimation is explored with application to discrete and continuous HMMs, respectivel...
متن کاملBayesian adaptive learning of the parameters of hidden Markov model for speech recognition
In this paper a theoretical framework for Bayesian adaptive learning of discrete HMM and semi continuous one with Gaussian mixture state observation densities is presented Corre sponding to the well known Baum Welch and segmental k means algorithms respectively for HMM training formulations of MAP maximum a posteriori and segmental MAP estima tion of HMM parameters are developed Furthermore a c...
متن کاملMean and covariance adaptation based on minimum classification error linear regression for continuous density HMMs
The performance of speech recognition system will be significantly deteriorated because of the mismatches between training and testing conditions. This paper addresses the problem and proposes an algorithm to adapt the mean and covariance of HMM simultaneously within the minimum classification error linear regression (MCELR) framework. Rather than estimating the transformation parameters using ...
متن کامل